Environmental Pollution 234 (2018) 253—259

Contents lists available at ScienceDirect 2

ENVIRONMENTAL
POLLUTION

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Historical legacies of river pollution reconstructed from fish scales™ R

Check for
updates

Paloma Moran * ', Laura Cal °, Antonio Cobelo-Garcia °, Clara Almécija °, Pablo Caballero ¢,
Carlos Garcia de Leaniz ¢ ™!

2 Departamento de Bioquimica, Genética e Inmunologia, Facultad de Biologia, Universidade de Vigo, Spain
b Instituto de Investigaciones Marinas de Vigo (IIM-CSIC), Spain

¢ Servicio de Conservacion de la Naturaleza de Pontevedra, Xunta de Galicia, Spain

d BioSciences, CSAR, Swansea University, Swansea SA2 8PP, UK

ARTICLE INFO ABSTRACT

Article history:

Received 12 June 2017
Received in revised form

14 November 2017
Accepted 15 November 2017

Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on
biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper
mine during the 1970—1980s but absence of baseline values and lack of subsequent monitoring have
prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels
of historical copper pollution and its effects on salmon fitness. Copper bioaccumulation significantly
increased over baseline values during the operation of the mine, reaching sublethal levels for salmon
survival. Juvenile growth and relative population abundance decreased during mining, but no such ef-
fects were observed in a neighbouring river unaffected by mining. Our results indicate that historical
copper exposure has probably compromised the fitness of this Atlantic salmon population to the present
day, and that fish scales are suitable biomarkers of past river pollution.
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1. Introduction

Past industrial practices can leave a pollution legacy that is often
difficult to assess, as there are seldom before and after measure-
ments. Atlantic salmon (Salmo salar) is a locally adapted species
(Garcia de Leaniz et al., 2007) which constitutes a good indicator of
water quality. Juveniles require well oxygenated waters and their
survival and growth are negatively affected by water pollution
(Gibson, 1993; Coghlan and Ringler, 2005). For example, heavy
metals can trigger osmotic imbalance and alter enzymatic pro-
cesses that can impair growth (Jezierska et al., 2009; Heydarnejad
et al., 2013) and also disrupt the sensory physiology and anti-
predatory behaviour of fish (Hecht et al.,, 2007; Sandahl et al,,
2007; Mcintyre et al., 2012), all of which can impair fitness and
increase mortality.

The analysis of fish scales can be used to reconstruct individual
growth profiles, as the spacing between adjacent growth rings is
proportional to body size increments (Schroder and Garcia de
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Leaniz, 2011; Marco-Rius et al., 2013). In addition, the chemical
composition of fish scales tends to reflect the composition of the
waters in which the fish live (Pender and Griffin, 1996), as there is
often a good correlation between trace element concentration in
scales and the water they are exposed to (Sauer and Watabe, 1984,
1988; Wells et al., 2000). The analysis of fish scales, thus, could be
used to simultaneously detect the presence of pollutants and their
effects on fitness, as impaired growth is a typical consequence of
water pollution (Clearwater et al., 2002).

Open pit mining has impacted many rivers throughout the
world but the long-term effects are often difficult to quantify due to
lack of historical baseline data and absence of long-term moni-
toring (Hudson-Edwards et al., 2011). The river Ulla (NW Spain)
received elevated concentrations of sulphates and heavy metals
from acidic runoff caused by open pit mining and copper flotation
during a 14 year period (1974—1988; Fernandez et al., 2006). This
resulted in substantial degradation of the surrounding environ-
ment (Otero et al., 2012). In 1988 the mine was closed due to falling
copper prices and decreasing mineral quality (Cerqueira et al.,
2012), and restoration measures were implemented in 2003 with
the addition of technosols (Asensio et al., 2013). However, the
extent to which open mining may have already compromised the
local fish populations is unknown.

We took advantage of the availability of archived fish scales as
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indicators of fish growth and water chemistry to reconstruct levels
of copper pollution and its effects on fitness of Atlantic salmon in
the River Ulla during the operation of a copper mine. An analysis of
several other heavy metals on a shorter time series has recently
been provided by Cobelo-Garcia et al. (2017). Salmon scales from
the neighbouring River Mino were used as controls. This river is
located 200 km to the south and has been proposed as a reference
site for ecotoxicological studies as it is unaffected by heavy metal
pollution and has remained relatively pristine (Reis et al., 2009).
Thus, the analysis of historical fish scales from an impacted and
control river enabled us to capitalize on a natural disturbance
experiment and assess the long-term effects of chronic heavy metal
pollution on an endangered fish species.

2. Materials and methods

We used archived salmon scales from adult salmon returning to
the rivers Ulla (impacted river) and Mino (control river; Fig. 1),
caught over a 61 year period (1951—-2012). Atlantic salmon has a
generation time of c. 3 years in the Iberian peninsula (Consuegra
et al,, 2005), we therefore considered three periods for the pur-
pose of analysis: pre-mining (scales from adult fish caught before
1977), the mining period (adult fish caught between 1977 and
1991), and post-mining (adult fish caught after 1991). Fitness-
related data (growth and abundance) were collated for both
rivers, but copper data was only available for the River Ulla. Thus,
our study conformed to a BACI (Before-After-Control-Impact)
design for the fitness data, and a BA design (Before-After) for the
copper bio-accumulation data (Manly, 2008), as in other field
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studies of copper pollution on salmon (Sprague et al., 1965).

2.1. Scale growth analysis

Scales were available from 492 individuals caught between 1951
and 2012 which had been stored dry in paper envelopes. Between
three and five scales with non-regenerated nuclei were selected per
individual; from these, acetate impressions were made with the aid
of a pressure roller, and these were scanned with a Canon 300
microfilm scanner at 23—50x magnification and saved as high
resolution TIFF images (Kuparinen et al, 2009). The software
Image-] v.1.4.1 (Abramoff et al., 2004) was used to identify the scale
annuli and age the fish (Shearer, 1992; Rifflart et al., 2006), and to
estimate scale growth at the end of the first winter in freshwater,
the point of entry into the sea (smolt size), and the end of the first
summer at sea (post-smolt growth, PSG) as per Marco-Rius et al.
(2013).

2.2. Reliability of scale growth analysis

We ascertained the precision of scale analysis by calculation the
repeatability of two growth points (smolt size and end of first
marine growing season) on a sample of 30 individuals repeated
twice as per Kuparinen et al. (2009). Scale measurements were not
converted to body size measurement to avoid additional errors, as
variation in scale measurement (0.01 mm; CV: 13.9%) was lower
than that of body size measurement (cm; CV: 15.3%). The use of a
pressure roll to obtain acetate impressions of the salmon scales did
not distort the size of the scales (paired t-test ty9 = 0.229, P = 0.41).
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Fig. 1. Location of the study river impacted by open pit copper mining (R. Ulla), and of the reference control river unaffected by mining (R. Mino). Shown are the location of the
Touro copper mine and the stream reach impacted by copper pollution (in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Repeatability in scale measurements was high (Cronbach's «, first
winter growth = 0.963; total river growth = 0.981), indicating that
our estimates of salmon growth based on scale measurements were
precise.

2.3. Measures of salmon abundance

We used angling catches as a proxy of salmon abundance, as the
study populations had been exploited by rod and line only during
the study period, and all the salmon caught in the fishery are
recorded (Garcia de Leaniz and Martinez, 1988; Alvarez et al., 2010).
Most southern salmon populations have experienced pronounced
declines in abundance in recent decades, so in order to compare the
population trends of the impacted and reference populations we
normalized their catches by calculating the proportional contri-
bution of each river (excluding itself) to the total salmon catch in
the region (Galicia, NW Spain) using data available in Alvarez et al.
(2010). We used angling data from 1961 to 1999, as catches before
1961 were unreliable for the River Mino and catches after 1999
were subjected to catch quotas and other fishery restrictions that
made direct comparisons among rivers difficult (Alvarez et al.,
2010).

2.4. Analysis of barium and copper content of fish scales

Scales from the River Ulla collected between 1951 and 2007
were analysed for copper and barium; no scales were available
from the River Mino for this purpose. Before digestion, scales were
vigorously scrubbed and soaked in MQ water in order to remove
surface contaminants. Between 50 and 100 mg (3—5 scales) were
digested per individual with concentrated ultra-pure HNO3 (Merck
Suprapur). Analysis of scale digests (N = 23) was carried out by ICP-
MS (X Series, Thermo Elemental) as described in Cobelo-Garcia
et al. (2017). Analytical precision was checked using the DORM-2
reference standard (fish muscle powder, NRCC-Canada), obtaining
a good agreement with the certified values (difference between
observed and reference material, Ba = 2.9%, Cu = —9.3%). Because
Ba bioaccumulation occurs mostly in freshwater (Adey et al., 2009),
and fish from different periods differed in body size and age
(Table 1), we used the Cu/Ba ratio to derive an index of freshwater
Cu bioaccumulation that could be more readily related to the
operation of the mine and compared across periods.

2.5. Statistical analysis

All analyses were carried out using R v. 3.3.2 (R Core Team,
2017). Temporal changes in Cu and Cu:Ba in the salmon scales
were analysed via generalized additive modelling (GAM) using a
penalized regression spline in the mgcv package to account for non-
linearity (Wood, 2001). We employed a general linear model to
analyse growth data at three life stages (first freshwater winter,

Table 1
Demographic data (mean + SE) for adult Atlantic salmon in the impacted and control
rivers.

River Period N River Fork Weight
age (yr) length (mm) (gr)

R. Ulla (Impacted)
Pre-mining 96 1.32 (0.05) 827 (9.9) 6555 (198)
Mining 96 1.39 (0.05) 798 (6.1) 5011 (136)
Post-mining 96 1.17 (0.04) 722 (11.8) 4106 (229)

R. Mino (Control)
Pre-mining 44 1.43 (0.08) 872 (17.0) 6702 (355)
Mining 57 1.30 (0.06) 802 (8.0) 5631 (205)
Post-mining 103 1.45 (0.05) 799 (4.4) 5354 (94)

entry into seawater, and end of the first marine summer) as a
function of river of origin (impacted or control), period of mining
(pre-mining, mining, post-mining) and freshwater age. To analyse
changes in the relative abundance of salmon in the impacted and
control river we employed a generalized linear model fitted with a
quasibinomial link function to adequately model proportion data.
In each case, we statistically compared models with and without a
River x Period interaction to test whether salmon in the control
and impacted rivers were responding differently to the operation of
the mine, as one would expect from a BACI design if the mine was
impacting one river but not the other.

3. Results
3.1. Copper concentration in salmon scales

The influence of the open pit mine is clearly seen by an increase
in the deposition of copper on the scales of Atlantic salmon in the
River Ulla (Fig. 2a). GAM analysis indicates that 77% of the deviance
in copper in salmon scales can be explained by a strong temporal
trend (smooth component of year class, Fedf 4.039, ref 4.894 = 11.65,
P < 0.001).

The concentration of copper in salmon scales changed signifi-
cantly during the three periods considered (ANOVA, F, 20 = 45.741,
P < 0.001). Mean copper concentration during the operation of the
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Fig. 2. Temporal trends obtained by generalized additive modelling (GAM, 95 CI in-
tervals) in (a) copper concentration (pug/g) and (b) copper to barium ratio (w/w) in fish
scales of adult Atlantic salmon returning to the River Ulla. Dotted lines indicate year
classes that would have been affected by heavy metal pollution from the open pit
mine.
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mine (19.56 + 1.13 pg/g) exceeded about 7 times the values found
after the mine was closed (2.96 + 1.03 pg/g; Tukey Honest Signif-
icant Difference test; P < 0.001) and was also higher, but not
significantly so (Tukey HSD P = 0.69) than the mean during the pre-
mining period (17.68 + 2.08 pg/g; Table 2). An even stronger signal
for the operation of the mine is obtained when copper values are
normalized by the concentration of barium to account for variation
in the size and age of salmon in different periods, as barium is
deposited mostly in freshwater (Adey et al., 2009). Using this
approach, a strongly humped temporal trend in Cu:Ba is revealed,
which coincides with the mining period (Fig. 2b). GAM analysis
indicates that 89% of the deviance in Cu:Ba (w/w) is explained by
the temporal trend (smooth component of year class, Fedf 5134, ref
6102 = 21.14, P < 0.001). Cu:Ba values differed significantly during
the three study periods (ANOVA, F, 30 = 37.161, P < 0.001) and mean
Cu:Ba during mining (7.90 + 0.87) showed a 7-fold enrichment
compared to the post-mining period (1.11 + 0.34), and two-fold
enrichment compared to the pre-mining period (3.73 + 0.38).
Post-hoc pairwise comparisons were all statistically different
(Tukey HSD; Pre-mining vs. mining, P < 0.001; mining vs. post-
mining, P < 0.001; pre-mining vs. post-mining, P = 0.02).

To determine when copper was most likely to have been
deposited in the scales, we compared model fits with year of
sampling (i.e. year of return to freshwater from the sea) and with
year class (i.e. cohort or year of hatching, three years before adults
were sampled following their return from the sea). Using year class
resulted in models with significantly lower AIC values (and thus
provided a more plausible fit) than with year of return for both Cu
(AIC year class = 133.38; AIC year of return = 157.64;
AAIC = —24.25) and Cu:Ba (AIC year class = 93.42; AIC year of
return = 98.34; AAIC = —4.92). This suggests that copper bio-
accumulation most likely occurred during the juvenile phase in
freshwater, rather than during the adult phase in the estuary or the
sea, or when adults returned to the river.

3.2. Changes on salmon growth

Comparisons between the unaffected (control) river (R. Mino)
and the river impacted by mining (R. Ulla) indicates the existence of
a significant interaction between river and period for all metrics of
salmon growth (Fig. 3), as one would expect from a BACI design.
Thus, growth during the juvenile phase in freshwater declined
sharply during the mining period in the impacted river, but not in
the control river, where it remained stable over the whole period.

Table 2
Copper bioaccumulation in adult salmon scales (mean + SE) from the impacted river
Ulla at different periods during the operation of the copper mine.

Parameter  Period Adult salmon scales

Year of sampling  Impacted N Mean SE

year classes

Copper (Cu, pg/g)

Pre-mining 1951-1960 1948—1957 5 17.68 2.079
(before 1974)

Mining (1974 1983—-1991 1980—-1988 8 19.56 1.533
—1988)

Post-mining 1992-2007 1989-2004 10 2.96 1.031

(after 1988)
Copper/Barium (Cu:Ba wjw)

Pre-mining 1951-1960 1948—1957 5 3.73 0.378
(before 1974)

Mining (1974 1983—-1991 1980—-1988 8 7.90 0.867
—1988)

Post-mining 1992-2007 1989-2004 10 1.11 0.338

(after 1988)
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Fig. 3. Changes in mean scale growth (+95 CI) of adult Atlantic salmon in the control
river unaffected by mining (R. Mino) and the impacted river (R. Ulla) before, during
and after the operation of the copper mine.

After the operation of the mine ceased, freshwater growth recov-
ered in the River Ulla, reaching or approaching pre-mining values
(Fig. 3a and b). A reduction in freshwater growth in the impacted
river was evident both during the first year of life (Fig. 3a; ANOVA
F7'434 = 37.8, P < 0.001; River F1,434 = 123.8, P < 0.001; Period
F> 484 = 4.7, P = 0.010; Freshwater age F; 434 = 85.8, P < 0.001; River
x Period F4gs = 104, P < 0.001; River x Freshwater age
Frag4 = 249, P < 0.001) and over the entire juvenile phase in
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freshwater (Fig. 3b; ANOVA Fg4gz = 25.3, P < 0.001; River
Fy483 = 139.2, P < 0.001; Period F, 483 = 3.3, P = 0.038; Freshwater
age Fi4s3 = 33.2, P < 0.001; River x Period F, 483 = 8.3, P < 0.001;
Period x Freshwater age F,4s3 = 4.5, P = 0.011). Marine growth
during the first summer at sea (Fig. 3¢) declined significantly for
both rivers during the study period (ANOVA Fg 485 = 17.2, P < 0.001;
Period F485 = 33.3, P < 0.001) but did so differently for the
impacted river and the control (River x Period F,435 = 4.3,
P = 0.014), once the effects of variation in freshwater age are taken
into account (River age Fy485 = 18.2, P < 0.001). Thus, migrating
smolts in the impacted river experienced a very sharp decline in
marine growth during the mining period, something that was not
observed in the control fish (Fig. 3c).

3.3. Changes in relative salmon abundance

As with the metrics of growth, a significant River x Period
interaction existed for the index of relative salmon abundance,
indicating that the abundance of the salmon populations in the
control and impacted rivers had changed differently during the
study period. The generalized linear model with the River x Period
interaction term explained 43.4% of deviance compared to 36.4% for
the model with only main effects (model comparison by ANOVA,
df = -2, deviance = —440.67, P = 0.024). Thus, relative abundance
in the impacted river decreased sharply during the years of mining
activity and continued to decrease thereafter with no evidence of
recovery, while in the reference river abundance did not change
significantly during the mining period, and then increased post-
mining (Fig. 4).

4. Discussion

Our analysis of a natural disturbance experiment demonstrates
the value of using archived fish scales for reconstructing historical
levels of river pollution and for assessing the long-term effects of
heavy metals on fish fitness. Analysis of Atlantic salmon scales
collected over a 61 year period revealed a significant increase in
copper bioaccumulation that coincided with the operation of an
open pit copper mine, and which returned to near basal levels after
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Fig. 4. Changes in the relative abundance (mean + 95 binomial CI) of adult Atlantic
salmon in the control river unaffected by mining (R. Mino) and the impacted river (R.
Ulla) before, during and after the operation of the copper mine. Shown is the relative
contribution of each river (excluding itself) to the rod and line catch of Atlantic salmon
in the region of Galicia (NW Spain).

the mine was closed. Using a powerful BACI design we also show
that exposure to copper was accompanied by a marked decrease in
juvenile growth and in the relative abundance of salmon in the
impacted river, something that was not seen in salmon from a
nearby river unaffected by mining. Given that metal concentrations
in fish scales are proportional to metal concentrations in the water
the fish live in (Sauer and Watabe, 1984; Wells et al., 2000), it is
possible to reconstruct the approximate concentration of copper in
the impacted river. Thus, taking a ‘pristine’ value of dissolved Cu of
1-5 nM for neighbouring rivers in the present day (Prego and
Cobelo-Garcia, 2003), we may estimate copper concentrations of
up to 75—100 nM (4.8—6.4 ppb) and an average of 7—35 nM
(0.45—2.2 ppb) during the operation of the copper mine in the
1980's. Although this is a mere estimate subject to several sources
of error, such copper concentrations have been shown to impair
fitness and diminish the sensory capabilities of salmonids (Scott
and Sloman, 2004; Hecht et al., 2007), and our study shows that
there were significant decreases in juvenile growth and relative
abundance.

Copper is an essential trace metal for aquatic organisms, acting
as a cofactor for several enzymes that play a central role in cellular
metabolism (Wood et al., 2012). Fish take up copper from the diet
and also from the water through the gills. Copper-rich water can be
toxic to fish because copper directly affects the structural integrity
of the gill epithelium and impairs osmoregulation (Heath, 1995;
Wood et al.,, 2012), which will reduce survival, particularly during
the juvenile stages when fish have a small body size (Grosell et al.,
2007; Shaw et al., 2012) or when fish migrate from freshwater to
the marine environment (Heath, 1995); copper exposure has also
many other impacts on fish (reviewed in Clearwater et al., 2002), a
reduction in condition factor and specific growth rates being some
of the most common impacts (McKim and Benoit, 1974;
Heydarnejad et al., 2013). This may explain why juvenile salmon
in the impacted river did not grow as well as those from the un-
disturbed control river and did not appear to have survived as well,
as inferred from the dramatic decrease in relative abundance.

Analysis of scales of Atlantic salmon in southern rivers indicates
that growth occurs in the river and in the sea, with limited or no
growth occurring in the estuaries (Consuegra et al., 2005). As ocean
waters are naturally poor in dissolved copper (<3.5 nmol/kg, Boyle
et al., 1981), copper bio-accumulation in salmon scales must have
taken place mostly in freshwater. This is also supported by our
analysis of Cu:Ba values, which suggests that copper deposition
occurred mostly in the freshwater part of the fish scales, and by
model comparisons, which indicates that year class (i.e. hatch year)
is a better predictor of copper in the scales than year of return, again
indicating the copper deposition must have occurred during the
juvenile phase in the river, rather than in the estuary or the sea.

Salmon scales consists of a well-mineralized external bioapatite
layer overlying a thicker, collagen-rich basal plate that makes up
70% of the scale mass (Hutchinson and Trueman, 2006; Adey et al.,
2009). Scale growth is achieved by deposition of successive layers
of collagen, followed by mineralization of the external layer, which
grows centrifugally (Hutchinson and Trueman, 2006). Our study
cannot distinguish between dietary and waterborne copper uptake
in the salmon scales, but given the extent of copper pollution in the
study river, it is likely that both mechanisms were involved. In
rainbow trout, dietary copper uptake appears to be more important
than waterborne uptake in the gills, liver and gut (Kamunde et al.,
2002), and it is likely that the same happens in fish scales.

Most studies on copper toxicity in fish have been carried out
under laboratory conditions during short periods of time
(Berntssen et al., 1999; Shaw et al., 2012), or are derived from
benthic species living among polluted sediments (Oliva et al., 2012).
Long-term studies on the impacts of heavy metals on natural fish
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populations living in rivers are rare. The juvenile stages of fresh-
water fish are particularly vulnerable to pollution by heavy metals
but studies in the wild are difficult to monitor due to lack of
baseline values and the challenge of finding suitable metrics of
fitness. The novelty of our approach lies in the fact that we were
able to implement a robust experimental design that included
controls (for fitness measures), as well as before and after samples,
to simultaneously detect the presence of a contaminant (copper)
and monitor its effects on fitness (growth) using fish scales
collected over several decades. This enabled us to demonstrate
growth inhibition, most likely due to copper exposure, during the
juvenile phase of Atlantic salmon in freshwater. Although our study
was ecological - not experimental, and did not establish a causal
relationship between copper exposure and copper in the scales,
previous studies have shown that the concentration of trace metals
in fish scales is positively correlated to that of the surrounding
water in several fish species (mummichog, Sauer and Watabe, 1984;
barramundi, Pender and Griffin, 1996; Norfolk spot, Wells et al.,
2000). Moreover, in Atlantic salmon, scales of juveniles collected
from different rivers display significantly different concentrations
of trace metals (including copper; Flem et al., 2005; Adey et al.,
2009), which are thought to reflect geological differences in the
bedrock (and hence in the water) the fish lived in.

With the above caveat in mind, our results suggest that chronic
exposure to sublethal levels of dissolved copper may have
increased juvenile salmon mortality, although the long-term effects
of copper pollution on salmon survival are difficult to assess. While
all salmon rivers in the study region have experienced a marked
decline in abundance over the last few decades (Garcia de Leaniz
et al, 2001; Alvarez et al, 2010), our analysis indicates that
salmon catches in the river impacted by copper pollution decreased
to a much larger extent than in neighbouring rivers. Thus, the
relative abundance of salmon in the impacted river (measured as
the river's contribution to total salmon catches in the region
excluding itself) decreased from 38% (pre-mining) to 25% (mining)
and then to 7% (post-mining), while in the control river they
remained stable at 11-12% and then increased to 24% in more
recent years. We acknowledge that using angling catches to infer
changes in salmon survival has inherent limitations (Bielak and
Power, 1988), but our study populations are small, and all fish
caught in the fishery are recorded, which probably increases the
reliability of using catch data for monitoring trends in abundance
(Garcia de Leaniz et al., 2001). Indeed, we have previously shown
that salmon catches provide valid proxies for year class strength
under these conditions (Consuegra et al., 2005).

Taken together, our study indicates that copper pollution caused
by run-off from an open pit mine seems to have compromised the
fitness of Atlantic salmon in the River Ulla to the present day, and
that fish scales are suitable biomarkers of past river pollution.
Although the closure of the mine may have brought levels of dis-
solved copper back to basal levels (as judged by the observed
decrease in copper bioaccumulation in fish scales), this was not
enough to prevent the continuing decline of the impacted salmon
population, whose relative abundance decreased more than three-
fold since mining stopped.

Copper pollution caused by mining was found to prevent the
upstream migration of Atlantic salmon in the Miramichi River in
Canada, with no evidence of habituation over successive year-
classes (Saunders and Sprague, 1967), and was also predicted to
delay recovery time and to increase the risk of extinction in en-
dangered Chinook salmon (Mebane and Arthaud, 2010). Many
Atlantic salmon populations in the Iberian peninsula (including the
study river) are endangered or critically endangered (Garcia de
Leaniz et al., 2001; WWEF, 2001). They have few age classes, low
resilience, and small effective population sizes (Consuegra et al.,

2005; Kuparinen et al.,, 2010), which will make their recovery
difficult or even impossible after prolonged heavy metal pollution.
Thus, current proposals to reopen the Touro copper mine (Prieto,
2017; DOG, 2017) will likely place the salmon population in the
River Ulla at the brink of extinction.
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